Convergence of Algorithms for Reconstructing Convex Bodies and Directional Measures1 by Richard
نویسندگان
چکیده
We investigate algorithms for reconstructing a convex body K in Rn from noisy measurements of its support function or its brightness function in k directions u1, . . . , uk . The key idea of these algorithms is to construct a convex polytope Pk whose support function (or brightness function) best approximates the given measurements in the directions u1, . . . , uk (in the least squares sense). The measurement errors are assumed to be stochastically independent and Gaussian. It is shown that this procedure is (strongly) consistent, meaning that, almost surely, Pk tends to K in the Hausdorff metric as k → ∞. Here some mild assumptions on the sequence (ui) of directions are needed. Using results from the theory of empirical processes, estimates of rates of convergence are derived, which are first obtained in the L2 metric and then transferred to the Hausdorff metric. Along the way, a new estimate is obtained for the metric entropy of the class of origin-symmetric zonoids contained in the unit ball. Similar results are obtained for the convergence of an algorithm that reconstructs an approximating measure to the directional measure of a stationary fiber process from noisy measurements of its rose of intersections in k directions u1, . . . , uk . Here the Dudley and Prohorov metrics are used. The methods are linked to those employed for the support and brightness function algorithms via the fact that the rose of intersections is the support function of a projection body.
منابع مشابه
Reconstruction of Convex Bodies from Brightness Functions
Algorithms are given for reconstructing an approximation to an unknown convex body from finitely many values of its brightness function, the function giving the volumes of its projections onto hyperplanes. One of these algorithms constructs a convex polytope with less than a prescribed number of facets, while the others do not restrict the number of facets. Convergence of the polytopes to the b...
متن کاملPhase Retrieval for Characteristic Functions of Convex Bodies and Reconstruction from Covariograms
We propose strongly consistent algorithms for reconstructing the characteristic function 1K of an unknown convex body K in R from possibly noisy measurements of the modulus of its Fourier transform 1̂K . This represents a complete theoretical solution to the Phase Retrieval Problem for characteristic functions of convex bodies. The approach is via the closely related problem of reconstructing K ...
متن کاملOn the strong convergence theorems by the hybrid method for a family of mappings in uniformly convex Banach spaces
Some algorithms for nding common xed point of a family of mappings isconstructed. Indeed, let C be a nonempty closed convex subset of a uniformlyconvex Banach space X whose norm is Gateaux dierentiable and let {Tn} bea family of self-mappings on C such that the set of all common fixed pointsof {Tn} is nonempty. We construct a sequence {xn} generated by the hybridmethod and also we give the cond...
متن کاملOn new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces
In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.
متن کاملSpeech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering
This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS ...
متن کامل